

NATO S&T Organization NATO MODELLING & SIMULATION GROUP ANNUAL SYMPOSIUM

"Virtual Reality CBRN Defence" (16)

paper presentation:

Presenter:

DI Johannes GOELLNER, MSc

National Defence Academy/AUT MoD Head of Section Knowledge Management Dept. of Central Documentation & Information

1070 Vienna, Austria email: johannes.goellner@bmlv.gv.at **Dr. Christian SCHOENAUER**

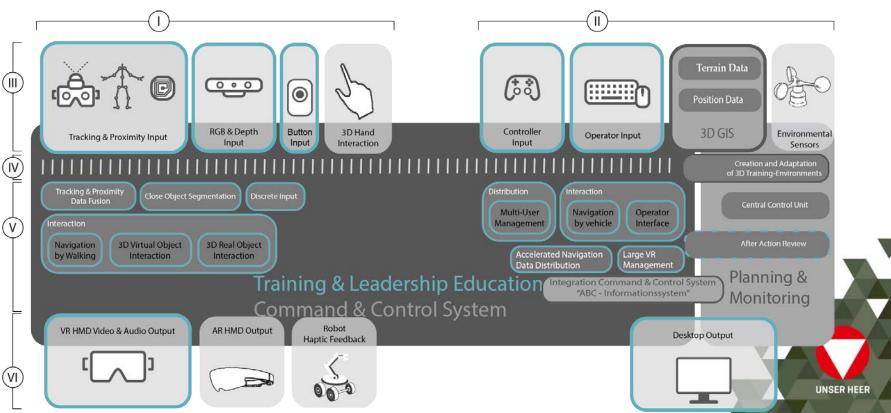
TU Wien-Technical University Vienna Faculty of Informatics Institute of Visual Computing & Human-Centered Technology 1040 Vienna, Austria email: <u>christian.schoenauer@tuwien.ac.at</u>

Overview

- Problem & Motivation
- Requirements
- Design & Architecture
- Implementation
- User Study
- Conclusion & Future Work

Problem Statement & Motivation

- Learning under guidance in a controlled setting
- Real world training requires immense resources (financial costs, equipment, participants need to travel, ...)
- Some scenarios not possible to train in real world (wide-area contamination)
- Repetition of scenarios with different parameters
- Controllability of the scenario's characteristics
- Exposure to hazardous conditions
- After Action Review


Requirements of CBRN Training

- Three skill bundles with a high potential to be trained in VR were identified:
 - CBRN-defence recce
 - Urban search and rescue
 - Skills for aircraft rescue
- Derived technical requirments
 - Movement (virtual and physical)
 - Manipulation of objects (virtual and physical)
 - Communication
 - Customization of Scenario Content & Parameters

System Design

TU

Hardware

I. Virtual Reality Backpack

Schenker XMG Walker (Intel Core i7, NVIDIA GeForce GTX 1070)

II. Head Mounted Display

- Oculus Rift Consumer Version
- III. **RFID**-reader
- **IV.** Motion capture suit
 - Perception Neuron
- V. Tracking camera
- VI. RGB-D camera
 - Intel Realsense

Tracking and Navigation

- Marker-based Head-tracking
 - Inside-out tracking
 - Natural navigation by walking
 - Warehouse scale tracking
 - Efficient implementation on GPU

Gamepad

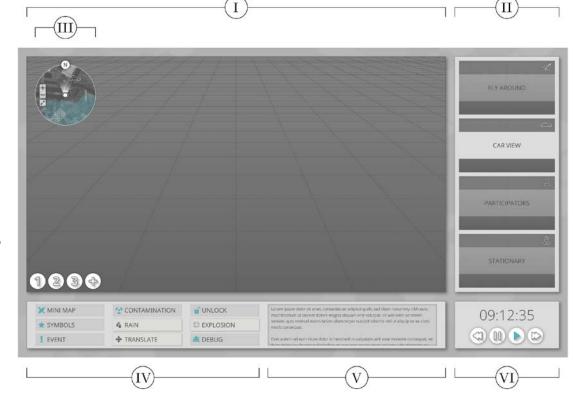
- Navigation by virtual vehicle (Pinzgauer 710FM or Dingo)
- Wide-area navigation in virtual world

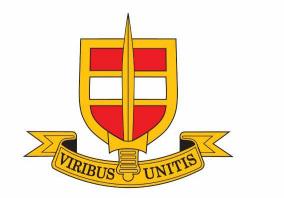
Interaction with Real Equipment

- Augmented Virtuality Approach
- RFID and Motion Capture Suit
 - Real items equipped with RFID-Tags
 - RFID-Reader on lower arm
 - Approximate item position in proximity of users' hands
 - Management of object ownership in multi-user scenarios
- Arbitrary objects
 - Map, ECAM, forms etc.

Application Scenario Implementation

- **CBRN Defence Recce**
 - Observation
 - Detection
- **Configurable Events**
 - Artillery
 - Air Strike
 - Configurable distribution of hazard materials on ground and air
- Area of 10km x 10km
 - Village with residential, administrative, commercial and industrial buildings
 - Based on GIS data
- Airspace of 2500m




Operator Interface

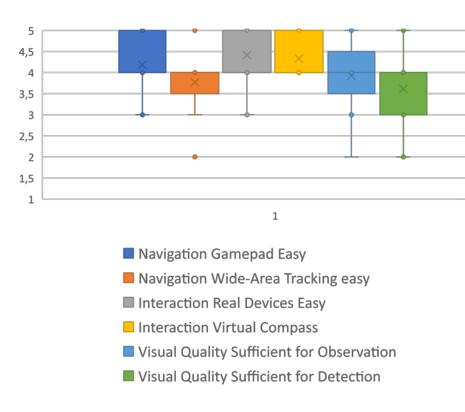
- I. Main scene view
- II. Four different camera perspective settings
- III. Minimap
- **IV.** Function keys
 - I. Trigger Events
 - II. Visualization options
 - III. Movement
- V. Debug output window
- VI. Time control and recording panel

Virtual Reality CBRN Defence

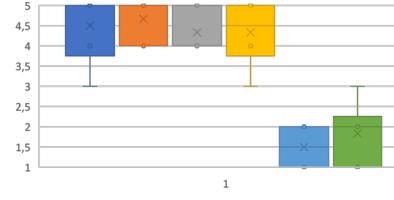
Johannes Göllner, Andreas Peer, Christian Meurers, Gernot Wurzer Christian Schönauer, Hannes Kaufmann, Chris Bösch

Evaluation

- ► 13 experts in CBRN defence
 - Competence Center NBC
 Defence of the Austrian Armed
 Forces (AFF)
 - National Defence Academy
- Two user studies during development
- Questionnaires with a five point Likert scale (1-5)
- Feedback implemented in demonstrator



Results Trainees


- All participants agreed that the virtual environment can support training CBRN Defence
- All participants liked training with multiple users in VR
 - Speed and quality of collaboration ok
- Interaction speed and visual quality of real items good, but can be improved
- ► Text down to 10pt recognizable
- Interaction with virtual equipment
 - Compass, height angle protractor very good
 - Others (ECAM, Menu) ok, but improved in latest version

Results Trainer

- Very positive feedback regarding usability
 - Intuitive little learning effort
 - Low complexity
 - Well integrated
- All participants agreed that the operator interface can support training CBRN Defence

Training easy to follow
 Interaction with Training easy

- Trainer View visually appealing
- Trainer view easy to handle
- Compexity of Trainer View
- Technician needed for Operation

Conclusion & Future Work (I)

- Demonstrator for immersive multi-user VR training
 - Navigation
 - Interaction with virtual and real equipment
 - Collaborative training with multiple users
 - Wide-area training environment
 - Trainee evaluation and education in CBRN Defence (After Action Review)
- Scenario CBRN Defence recce
- Evaluation

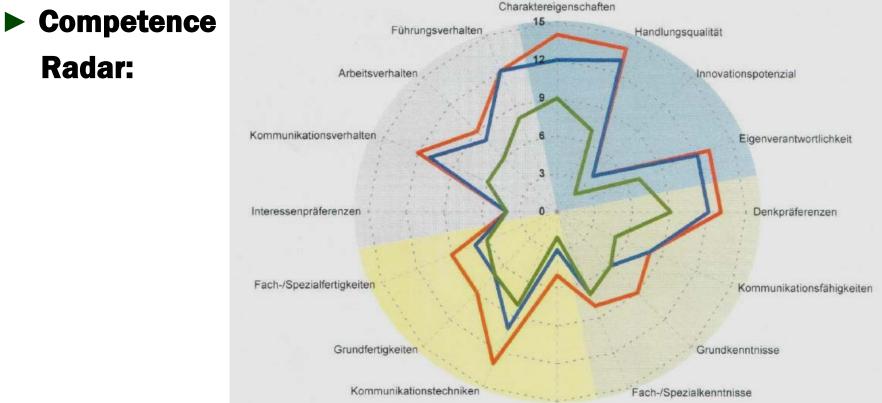
Conclusion & Future Work (II)

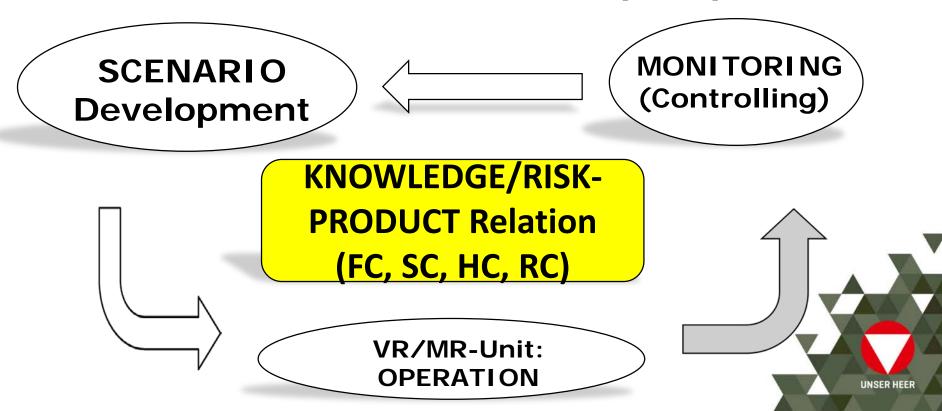
- Future Prototype
 - Extensions towards MR, with integration of an AR HMD and gesture interaction targeting requirements of a command and control system
 - Integration of mobile robot platform for haptic feedback
 - Integration of 3D GIS, "ABC (CBRN)-Informationssystem" and a separate planning and monitoring module.
 - Wider area of training scenarios in group-size
 - Continuation within Austria's FORTE defence research program and more long term with funding from the European Defence Agency.

Conclusion & Future Work (III.1)

(related to After Action Review)

Competence & skill profiling and After Action Review Measuring


- Leadership competences
- Social competences
- Personal competences
- Professional competences
- Methods competences


Radar:

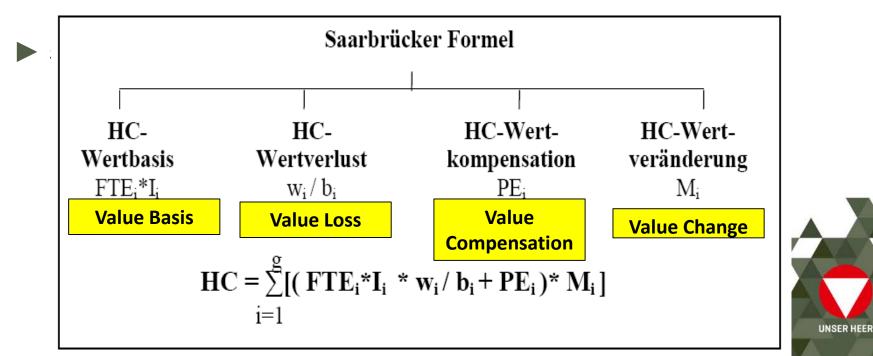
Conclusion & Future Work (III.2)

Conclusion & Future Work (III.3)

Conclusion & Future Work (III.4)

Human Capital – Measuring Models:

- Input Models: value of the HC = in employee invested sum of money
- Output Models: value of the HC = from employee earned profits
- Comparison Value Models: value of the HC = difference between at the employment market potentially achievable value and the transacted investments


Indicator Models:

- often only listings of indices
- mostly approximations

Conclusion & Future Work (III.5)

Thank you for your Attention !

Questions ?

"Virtual Reality CBRN Defence" (16)

contacts:

Presenter:

DI Johannes GOELLNER, MSc

National Defence Academy/AUT MoD Head of Section Knowledge Management Dept. of Central Documentation & Information

1070 Vienna, Austria email: johannes.goellner@bmlv.gv.at **Dr. Christian SCHOENAUER**

TU Wien-Technical University Vienna Faculty of Informatics Institute of Visual Computing & Human-Centered Technology 1040 Vienna, Austria email: christian.schoenauer@tuwien.ac.at